ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • #13. Convolutional Neural Networks: Application
    연구실 2019. 10. 13. 19:18

    * TensorFlow model

    (1) Create placeholders

    X = tf.placeholder(tf.float32, shape=[None, n_H0, n_W0, n_C0])
    Y = tf.placeholder(tf.float32, shape=[None, n_y])

    - tf.float32: 상수의 데이터형, 꼭 명시해주자.

     

     

    (2) Initialize parameters

    W1 = tf.get_variable("W1", [4,4,3,8], initializer = tf.contrib.layers.xavier_initializer(seed = 0))
    W2 = tf.get_variable("W2", [2,2,8,16], initializer = tf.contrib.layers.xavier_initializer(seed = 0))

    - tf.get_variable: Gets an existing variable with these parameters or create a new one. 

     

     

    (3) Forward propagation

    - 예시에서는 CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED 순으로 계산 수행.

     

    - tf.nn.conv2d(X,W1, strides = [1,s,s,1], padding = 'SAME'): convolve W1's filters on X, [1, s, s, 1]은 (m, n_H_prev, m_W_prev, n_C_prev)에 대한 stirde를 나타냄. 

    - tf.nn.max_pool(A, ksize = [1,f,f,1], strides = [1,s,s,1], padding = 'SAME'): A에 대해 window size (f, f)와 strides of size (s, s)의 max pooling을 수행.

    - tf.nn.relu(Z1): Z1에 대해 relu function 수행

    - tf.contrib.layers.flatten(P): input P를 1D로 만들어주는 함수

    - tf.contrib.layers.fully_connected(F, num_outputs): flattened input F를 가지고 fully connected layer에 넣어 계산해주는 함수.

    def forward_propagation(X, parameters):
        """
        Implements the forward propagation for the model:
        CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
        
        Arguments:
        X -- input dataset placeholder, of shape (input size, number of examples)
        parameters -- python dictionary containing your parameters "W1", "W2"
                      the shapes are given in initialize_parameters
    
        Returns:
        Z3 -- the output of the last LINEAR unit
        """
        
        # Retrieve the parameters from the dictionary "parameters" 
        W1 = parameters['W1']
        W2 = parameters['W2']
        
        # CONV2D: stride of 1, padding 'SAME'
        Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME')
        # RELU
        A1 = tf.nn.relu(Z1)
        # MAXPOOL: window 8x8, sride 8, padding 'SAME'
        P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME')
        # CONV2D: filters W2, stride 1, padding 'SAME'
        Z2 = tf.nn.conv2d(P1, W2, strides = [1,1,1,1], padding = 'SAME')
        # RELU
        A2 = tf.nn.relu(Z2)
        # MAXPOOL: window 4x4, stride 4, padding 'SAME'
        P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME')
        # FLATTEN
        P2 =  tf.contrib.layers.flatten(P2)
        # FULLY-CONNECTED without non-linear activation function (not not call softmax).
        # 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None" 
        Z3 = tf.contrib.layers.fully_connected(P2, num_outputs = 6, activation_fn=None)
    
        return Z3
        
    tf.reset_default_graph()
    
    with tf.Session() as sess:
        np.random.seed(1)
        X, Y = create_placeholders(64, 64, 3, 6)
        parameters = initialize_parameters()
        Z3 = forward_propagation(X, parameters)
        init = tf.global_variables_initializer()
        sess.run(init)
        a = sess.run(Z3, {X: np.random.randn(2,64,64,3), Y: np.random.randn(2,6)})
        print("Z3 = " + str(a))

     

     

    (4) Compute cost

    - tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y): softmax entropy loss를 계산. softmax activation function과 resulting loss를 함께 계산한다.

    - tf.reduce_mean: loss들을 합치고 전체적인 cost를 구할 때 사용한다.

    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y))

     

    (5) Model

    # GRADED FUNCTION: model
    
    def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
              num_epochs = 100, minibatch_size = 64, print_cost = True):
        """
        Implements a three-layer ConvNet in Tensorflow:
        CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
        
        Arguments:
        X_train -- training set, of shape (None, 64, 64, 3)
        Y_train -- test set, of shape (None, n_y = 6)
        X_test -- training set, of shape (None, 64, 64, 3)
        Y_test -- test set, of shape (None, n_y = 6)
        learning_rate -- learning rate of the optimization
        num_epochs -- number of epochs of the optimization loop
        minibatch_size -- size of a minibatch
        print_cost -- True to print the cost every 100 epochs
        
        Returns:
        train_accuracy -- real number, accuracy on the train set (X_train)
        test_accuracy -- real number, testing accuracy on the test set (X_test)
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
        
        ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
        tf.set_random_seed(1)                             # to keep results consistent (tensorflow seed)
        seed = 3                                          # to keep results consistent (numpy seed)
        (m, n_H0, n_W0, n_C0) = X_train.shape             
        n_y = Y_train.shape[1]                            
        costs = []                                        # To keep track of the cost
        
        # Create Placeholders of the correct shape
        ### START CODE HERE ### (1 line)
        X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
        ### END CODE HERE ###
    
        # Initialize parameters
        ### START CODE HERE ### (1 line)
        parameters = initialize_parameters()
        ### END CODE HERE ###
        
        # Forward propagation: Build the forward propagation in the tensorflow graph
        ### START CODE HERE ### (1 line)
        Z3 = forward_propagation(X, parameters)
        ### END CODE HERE ###
        
        # Cost function: Add cost function to tensorflow graph
        ### START CODE HERE ### (1 line)
        cost = compute_cost(Z3, Y)
        ### END CODE HERE ###
        
        # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
        ### START CODE HERE ### (1 line)
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
        ### END CODE HERE ###
        
        # Initialize all the variables globally
        init = tf.global_variables_initializer()
         
        # Start the session to compute the tensorflow graph
        with tf.Session() as sess:
            
            # Run the initialization
            sess.run(init)
            
            # Do the training loop
            for epoch in range(num_epochs):
    
                minibatch_cost = 0.
                num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
                seed = seed + 1
                minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
    
                for minibatch in minibatches:
    
                    # Select a minibatch
                    (minibatch_X, minibatch_Y) = minibatch
                    # IMPORTANT: The line that runs the graph on a minibatch.
                    # Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).
                    ### START CODE HERE ### (1 line)
                    _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
                    ### END CODE HERE ###
                    
                    minibatch_cost += temp_cost / num_minibatches
                    
    
                # Print the cost every epoch
                if print_cost == True and epoch % 5 == 0:
                    print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
                if print_cost == True and epoch % 1 == 0:
                    costs.append(minibatch_cost)
            
            
            # plot the cost
            plt.plot(np.squeeze(costs))
            plt.ylabel('cost')
            plt.xlabel('iterations (per tens)')
            plt.title("Learning rate =" + str(learning_rate))
            plt.show()
    
            # Calculate the correct predictions
            predict_op = tf.argmax(Z3, 1)
            correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))
            
            # Calculate accuracy on the test set
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
            print(accuracy)
            train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
            test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
            print("Train Accuracy:", train_accuracy)
            print("Test Accuracy:", test_accuracy)
                    
            return train_accuracy, test_accuracy, parameters

    - tf.train.AdamOptimizer(learning_rate = ...).minimize(cost): Use an AdamOptimizer that minimizes the cost.

     

     

    '연구실' 카테고리의 다른 글

    #15. Residual Networks  (0) 2019.10.14
    #14. Keras tutorial - the Happy House  (0) 2019.10.14
    #12. Convolutional Neural Networks: Step by Step  (0) 2019.10.13
    #11. Tensorflow Tutorial  (0) 2019.10.10
    #10. Optimization Methods  (0) 2019.10.10

    댓글

©hyunbul