ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • #15. Residual Networks
    연구실 2019. 10. 14. 16:54

    - ResNets(He et al.) allows train much deeper networks.

     

    * The problem of very deep neural networks

    - 깊은 네트워크는 복잡한 함수를 표현라고 다양한 level에서의 특징들(lower layer의 엣지부터 deeper layer의 복잡한 features)을 learn할 수 있지만, 항상 좋은것만은 아니다. Vanishing gradient라는 큰 문제가 발생할 수도 있기 때문이다. 

    - gradient descent 과정을 반복하다 보면 마지막 layer에서 첫번째 layer로 계속 backprop하게 되는데. 그 과정에서 각 step마다 weight matrix를 곱하게 된다. 그러면서 gradient가 0으로 수렴하는 현상이 발생한다.(반대로 exponentially 빠르게 증가해 엄청나게 큰 값을 가지게 되어 explode하는 경우도 발생할 수 있다.) 

     

     

    * Building a Residual Network

    - ResNet에서는 shortcut과 skip connection을 사용해 gradient가 그 다음 layer를 뛰어넘어 전달될 수 있도록 만든다.

    - input과 output 차원이 같냐, 다르냐에 따라 두 가지 종류의 블록을 선택해 사용하게 된다.

     

    (1) The identity block

    - ResNet에서 standard block으로 사용되며 input activation(a[l])이 output activation(a[l+2])와 같은 사이즈를 가지는 경우 사용한다. 

    * BatchNorm: training 과정을 speed up 할 수 있는 부분

     

    # GRADED FUNCTION: identity_block
    
    def identity_block(X, f, filters, stage, block):
        """
        Implementation of the identity block as defined in Figure 4
        
        Arguments:
        X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
        f -- integer, specifying the shape of the middle CONV's window for the main path
        filters -- python list of integers, defining the number of filters in the CONV layers of the main path
        stage -- integer, used to name the layers, depending on their position in the network
        block -- string/character, used to name the layers, depending on their position in the network
        
        Returns:
        X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
        """
        
        # defining name basis
        conv_name_base = 'res' + str(stage) + block + '_branch'
        bn_name_base = 'bn' + str(stage) + block + '_branch'
        
        # Retrieve Filters
        F1, F2, F3 = filters
        
        # Save the input value. You'll need this later to add back to the main path. 
        X_shortcut = X
        
        # First component of main path
        X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
        X = Activation('relu')(X)
        
        
        # Second component of main path (≈3 lines)
        X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
        X = Activation('relu')(X)
    
        # Third component of main path (≈2 lines)
        X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
    
        # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
        X = Add()([X, X_shortcut])
        X = Activation('relu')(X)
        
        
        return X

     

     

    (2) The convolutional block

    - input과 output의 차원이 다른 경우에 사용한다. identity block과 다른 점은 shortcut path에 Conv2D레이어가 있다는 것이다.

    # GRADED FUNCTION: convolutional_block
    
    def convolutional_block(X, f, filters, stage, block, s = 2):
        """
        Implementation of the convolutional block as defined in Figure 4
        
        Arguments:
        X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
        f -- integer, specifying the shape of the middle CONV's window for the main path
        filters -- python list of integers, defining the number of filters in the CONV layers of the main path
        stage -- integer, used to name the layers, depending on their position in the network
        block -- string/character, used to name the layers, depending on their position in the network
        s -- Integer, specifying the stride to be used
        
        Returns:
        X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
        """
        
        # defining name basis
        conv_name_base = 'res' + str(stage) + block + '_branch'
        bn_name_base = 'bn' + str(stage) + block + '_branch'
        
        # Retrieve Filters
        F1, F2, F3 = filters
        
        # Save the input value
        X_shortcut = X
    
    
        ##### MAIN PATH #####
        # First component of main path 
        X = Conv2D(F1, (1, 1), strides = (s,s), name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
        X = Activation('relu')(X)
        
    
        # Second component of main path (≈3 lines)
        X = Conv2D(F2, (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
        X = Activation('relu')(X)
    
        # Third component of main path (≈2 lines)
        X = Conv2D(F3, (1, 1), strides = (1,1), name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
    
        ##### SHORTCUT PATH #### (≈2 lines)
        X_shortcut = Conv2D(F3, (1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '1', kernel_initializer = glorot_uniform(seed=0))(X_shortcut)
        X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut)
    
        # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
        X = Add()([X, X_shortcut])
        X = Activation('relu')(X)
        
        
        return X

     

    * Building your first ResNet model(50 layers)

    # GRADED FUNCTION: ResNet50
    
    def ResNet50(input_shape = (64, 64, 3), classes = 6):
        """
        Implementation of the popular ResNet50 the following architecture:
        CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
        -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER
    
        Arguments:
        input_shape -- shape of the images of the dataset
        classes -- integer, number of classes
    
        Returns:
        model -- a Model() instance in Keras
        """
        
        # Define the input as a tensor with shape input_shape
        X_input = Input(input_shape)
    
        
        # Zero-Padding
        X = ZeroPadding2D((3, 3))(X_input)
        
        # Stage 1
        X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = 'bn_conv1')(X)
        X = Activation('relu')(X)
        X = MaxPooling2D((3, 3), strides=(2, 2))(X)
    
        # Stage 2
        X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1)
        X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
        X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
    
        # Stage 3 (≈4 lines)
        X = convolutional_block(X, f = 3, filters = [128, 128, 512], stage = 3, block='a', s = 2)
        X = identity_block(X, 3, [128, 128, 512], stage=3, block='b')
        X = identity_block(X, 3, [128, 128, 512], stage=3, block='c')
        X = identity_block(X, 3, [128, 128, 512], stage=3, block='d')
    
        # Stage 4 (≈6 lines)
        X = convolutional_block(X, f = 3, filters = [256, 256, 1024], stage = 4, block='a', s = 2)
        X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
        X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
        X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
        X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
        X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')
    
        # Stage 5 (≈3 lines)
        X = convolutional_block(X, f = 3, filters = [512, 512, 2048], stage = 5, block='a', s = 2)
        X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
        X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')
    
        # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"
        X = AveragePooling2D(pool_size=(2, 2), name='avg_pool')(X)
    
        # output layer
        X = Flatten()(X)
        X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)
        
        
        # Create model
        model = Model(inputs = X_input, outputs = X, name='ResNet50')
    
        return model
    model = ResNet50(input_shape = (64, 64, 3), classes = 6)

     

    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    model.fit(X_train, Y_train, epochs = 2, batch_size = 32)

     

    - plot으로 시각화하면 다음과 같다,

    댓글

©hyunbul