-
#6. Building your Deep Neural Network: Step by Step연구실 2019. 10. 4. 12:03
- build a deep neural network with many layers
- Notations:
(1) Superscript [l]: a quantity associated with the lth layer
(2) Superscript (i): a quantity associated with the ith example
(3) Lowerscript i: ith entry of a vector
* Outline
- 필요한 과정들을 단계별로 helper function으로 만들어 사용한다.
(1) Initialize the parameters for a two-layer network and for an L-layer neural network
(2) Forward propagation
1. Linear part of a layer's forward propagation(resulting in Z[l])
2. Activation function(relu/sigmoid)
3. 위의 두 단계를 합쳐 Linear -> Activation forward function
4. 3의 함수를 L-1번 반복한 뒤 Linear->Sigmoid 해주는 과정을 끝에 더해준다.
(3) Compute the loss
(4) Backward propagation
1. Linear part of a layer's backward propagation
2. Activation function(relu_backward/sigmoid_backward)
3. 위의 두 단계를 합쳐 Linear -> Activation backward function
4. 3의 함수를 L-1번 반복한 뒤 Linear->Sigmoid 해주는 과정을 끝에 더해준다.
(5) Update parameters
* Initialization
(1) 2-layer NN
- 모델 구조는 Linear -> Relu -> Lienear -> Sigmoid
- use random initialization for the weight matrices: np.random.randn(shape) * 0.01)
- use zero initialization for the biases: np.zeros(shape)
(2) N-layer NN
- 각 layer마다의 dimension을 표기해주어야 한다.
- input X의 size를 (12288, 209)이라고 하면:
* Forward Propagation module
(1) Linear Forward
- Z[l] = W[l]*A[l-1] + b[l] where A[0] = X를 계산하는 함수를 만들게 된다.
def linear_forward(A, W, b): """ Implement the linear part of a layer's forward propagation. Arguments: A -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) Returns: Z -- the input of the activation function, also called pre-activation parameter cache -- a python tuple containing "A", "W" and "b" ; stored for computing the backward pass efficiently """ Z = np.dot(W, A) + b assert(Z.shape == (W.shape[0], A.shape[1])) cache = (A, W, b) return Z, cache A, W, b = linear_forward_test_case() Z, linear_cache = linear_forward(A, W, b) print("Z = " + str(Z))
reuslt: Z = [[ 3.26295337 -1.23429987]]
(2) Linear-Activation Forward
- Activation Functions:
(1) Sigmoid: σ(Z)=σ(WA+b)=1/(1+e^{-(WA+b)}
(2) ReLU: A=RELU(Z)=max(0,Z)
- Linear -> Activation: 딥러닝에서 이 과정은 두 layer간이 아니라 한 layer안에서 일어나는 과정으로 계산된다.
def linear_activation_forward(A_prev, W, b, activation): """ Implement the forward propagation for the LINEAR->ACTIVATION layer Arguments: A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: A -- the output of the activation function, also called the post-activation value cache -- a python tuple containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently """ if activation == "sigmoid": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = sigmoid(Z) elif activation == "relu": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = relu(Z) assert (A.shape == (W.shape[0], A_prev.shape[1])) cache = (linear_cache, activation_cache) return A, cache A_prev, W, b = linear_activation_forward_test_case() A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid") print("With sigmoid: A = " + str(A)) A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu") print("With ReLU: A = " + str(A))
result: With sigmoid: A = [[ 0.96890023 0.11013289]] With ReLU: A = [[ 3.43896131 0. ]]
(3) L-Layer Model
- (2)의 과정을 (L-1)번 반복해야 한다.
- ŷ=A[L]= σ(Z[L])=σ(W[L]A[L-1] +b[L]
def L_model_forward(X, parameters): """ Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation Arguments: X -- data, numpy array of shape (input size, number of examples) parameters -- output of initialize_parameters_deep() Returns: AL -- last post-activation value caches -- list of caches containing: every cache of linear_activation_forward() (there are L-1 of them, indexed from 0 to L-1) """ caches = [] A = X L = len(parameters) // 2 # number of layers in the neural network # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list. for l in range(1, L): A_prev = A ### START CODE HERE ### (≈ 2 lines of code) A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], activation="relu") caches.append(cache) ### END CODE HERE ### # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list. ### START CODE HERE ### (≈ 2 lines of code) AL, cache = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], activation="sigmoid") caches.append(cache) ### END CODE HERE ### assert(AL.shape == (1,X.shape[1])) return AL, caches X, parameters = L_model_forward_test_case_2hidden() AL, caches = L_model_forward(X, parameters) print("AL = " + str(AL)) print("Length of caches list = " + str(len(caches)))
result: AL = [[ 0.03921668 0.70498921 0.19734387 0.04728177]] Length of caches list = 3
* Cost Function
- forward & backward propagation을 수행하기 위해서는 cost를 계산해야 한다!
- cross-entropy cost J =
# GRADED FUNCTION: compute_cost def compute_cost(AL, Y): """ Implement the cost function defined by equation (7). Arguments: AL -- probability vector corresponding to your label predictions, shape (1, number of examples) Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples) Returns: cost -- cross-entropy cost """ m = Y.shape[1] # Compute loss from aL and y. cost = -(1/m) * np.sum(np.multiply(Y, np.log(AL)) + (1-Y)*np.log(1-AL)) cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17). assert(cost.shape == ()) return cost Y, AL = compute_cost_test_case() print("cost = " + str(compute_cost(AL, Y)))
result: cost = 0.279776563579
* Backward Propagation module
보라색: forward, 갈색: backward - Linear backward
- Linear -> Activation backward where Activation computes the derivatives of either ReLU or sigmoid
- [Linear->ReLU] * (L-1) -> Linear -> Sigmoid backward
(1) Linear Backward
- for layer l, the linear part is: Z[l]=W[l]A[l-1] + b[l]
- dW[l], db[l], dA[l-1]을 구해야 한다.
(1) dW[l] = ∂J/∂W[l] = (1/m) * dZ[l] * A[l-1].T
(2) db[l] = ∂J/∂b[l] = (1/m) * sum(dZ[l])
(3) dA[l-1] = ∂J/∂A[l-1] = W[l]^T * dZ[l]
def linear_backward(dZ, cache): """ Implement the linear portion of backward propagation for a single layer (layer l) Arguments: dZ -- Gradient of the cost with respect to the linear output (of current layer l) cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ A_prev, W, b = cache m = A_prev.shape[1] dW = (1/m) * np.dot(dZ, A_prev.T) db = (1/m) * np.sum(dZ, axis = 1, keepdims=True) dA_prev = np.dot(W.T, dZ) assert (dA_prev.shape == A_prev.shape) assert (dW.shape == W.shape) assert (db.shape == b.shape) return dA_prev, dW, db dZ, linear_cache = linear_backward_test_case() dA_prev, dW, db = linear_backward(dZ, linear_cache) print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db))
(2) Linear-Activation backward
- backpropagation for the Linear->Activation layer
- g(.)가 activation function이면, sigmoid/relu_backward는 dZ[l] = dA[l] * g'(Z[l])을 계산하게 된다.def linear_activation_backward(dA, cache, activation): """ Implement the backward propagation for the LINEAR->ACTIVATION layer. Arguments: dA -- post-activation gradient for current layer l cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ linear_cache, activation_cache = cache if activation == "relu": dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) elif activation == "sigmoid": dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) return dA_prev, dW, db dAL, linear_activation_cache = linear_activation_backward_test_case() dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activation = "sigmoid") print ("sigmoid:") print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db) + "\n") dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activation = "relu") print ("relu:") print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db))
result: sigmoid: dA_prev = [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]] dW = [[ 0.10266786 0.09778551 -0.01968084]] db = [[-0.05729622]] relu: dA_prev = [[ 0.44090989 -0. ] [ 0.37883606 -0. ] [-0.2298228 0. ]] dW = [[ 0.44513824 0.37371418 -0.10478989]] db = [[-0.20837892]]
(3) L-Model Backward
- 전체 모델이 대한 backpropagation 함수를 만들자.
def L_model_backward(AL, Y, caches): """ Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group Arguments: AL -- probability vector, output of the forward propagation (L_model_forward()) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) caches -- list of caches containing: every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2) the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1]) Returns: grads -- A dictionary with the gradients grads["dA" + str(l)] = ... grads["dW" + str(l)] = ... grads["db" + str(l)] = ... """ grads = {} L = len(caches) # the number of layers m = AL.shape[1] Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL # Initializing the backpropagation dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"] current_cache = caches[L-1] #가장 끝이 current layer grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, 'sigmoid') # Loop from l=L-2 to l=0 for l in reversed(range(L-1)): # lth layer: (RELU -> LINEAR) gradients. # Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] current_cache = caches[l] dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+1)], current_cache, 'relu') grads["dA" + str(l)] = dA_prev_temp grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp return grads AL, Y_assess, caches = L_model_backward_test_case() grads = L_model_backward(AL, Y_assess, caches) print_grads(grads)
result:
dW1 = [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]] db1 = [[-0.22007063] [ 0. ] [-0.02835349]] dA1 = [[ 0.12913162 -0.44014127] [-0.14175655 0.48317296] [ 0.01663708 -0.05670698]]
(4) Update Parameters
- gradient descent를 사용하여 parameter를 update시킨다.
(1) W[l] = W[l] - αdW[l]
(2) b[l] = b[l] - αdb[l]
def update_parameters(parameters, grads, learning_rate): """ Update parameters using gradient descent Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of L_model_backward Returns: parameters -- python dictionary containing your updated parameters parameters["W" + str(l)] = ... parameters["b" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural network # Update rule for each parameter. Use a for loop. for l in range(L): parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l + 1)] parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l + 1)] return parameters parameters, grads = update_parameters_test_case() parameters = update_parameters(parameters, grads, 0.1) print ("W1 = "+ str(parameters["W1"])) print ("b1 = "+ str(parameters["b1"])) print ("W2 = "+ str(parameters["W2"])) print ("b2 = "+ str(parameters["b2"]))
result: W1 = [[-0.59562069 -0.09991781 -2.14584584 1.82662008] [-1.76569676 -0.80627147 0.51115557 -1.18258802] [-1.0535704 -0.86128581 0.68284052 2.20374577]] b1 = [[-0.04659241] [-1.28888275] [ 0.53405496]] W2 = [[-0.55569196 0.0354055 1.32964895]] b2 = [[-0.84610769]]
'연구실' 카테고리의 다른 글
#9. Gradient Checking (0) 2019.10.07 #7. Initialization (0) 2019.10.07 #5. Classification with one hidden layer (0) 2019.10.02 #4. Logistic Regression with a Neural Network midset (0) 2019.09.29 #3. numpy (0) 2019.09.26