ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • #6. Building your Deep Neural Network: Step by Step
    연구실 2019. 10. 4. 12:03

    - build a deep neural network with many layers

     

    - Notations:

        (1) Superscript [l]: a quantity associated with the lth layer

        (2) Superscript (i): a quantity associated with the ith example

        (3) Lowerscript i: ith entry of a vector

     

    * Outline

     

    -  필요한 과정들을 단계별로 helper function으로 만들어 사용한다.

    (1) Initialize the parameters for a two-layer network and for an L-layer neural network

    (2) Forward propagation

        1. Linear part of a layer's forward propagation(resulting in Z[l])

        2. Activation function(relu/sigmoid)

        3. 위의 두 단계를 합쳐 Linear -> Activation forward function

        4. 3의 함수를 L-1번 반복한 뒤 Linear->Sigmoid 해주는 과정을 끝에 더해준다.

    (3) Compute the loss

    (4) Backward propagation

        1. Linear part of a layer's backward propagation

        2. Activation function(relu_backward/sigmoid_backward)

        3. 위의 두 단계를 합쳐 Linear -> Activation backward function

        4. 3의 함수를 L-1번 반복한 뒤 Linear->Sigmoid 해주는 과정을 끝에 더해준다.

    (5) Update parameters

     

    * Initialization

    (1) 2-layer NN

    - 모델 구조는 Linear -> Relu -> Lienear -> Sigmoid

    - use random initialization for the weight matrices: np.random.randn(shape) * 0.01)

    - use zero initialization for the biases: np.zeros(shape)

     

    (2) N-layer NN

    - 각 layer마다의 dimension을 표기해주어야 한다.

    - input X의 size를 (12288, 209)이라고 하면:

     

    * Forward Propagation module

    (1) Linear Forward

    - Z[l] = W[l]*A[l-1] + b[l] where A[0] = X를 계산하는 함수를 만들게 된다.

    def linear_forward(A, W, b):
        """
        Implement the linear part of a layer's forward propagation.
    
        Arguments:
        A -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
    
        Returns:
        Z -- the input of the activation function, also called pre-activation parameter 
        cache -- a python tuple containing "A", "W" and "b" ; stored for computing the backward pass efficiently
        """
       
        Z = np.dot(W, A) + b
        
        assert(Z.shape == (W.shape[0], A.shape[1]))
        cache = (A, W, b)
        
        return Z, cache
        
    A, W, b = linear_forward_test_case()
    
    Z, linear_cache = linear_forward(A, W, b)
    print("Z = " + str(Z))

    reuslt: Z = [[ 3.26295337 -1.23429987]]

     

     

    (2) Linear-Activation Forward

    - Activation Functions:

        (1) Sigmoid: σ(Z)=σ(WA+b)=1/(1+e^{-(WA+b)} 

        (2) ReLU: A=RELU(Z)=max(0,Z)

    - Linear -> Activation: 딥러닝에서 이 과정은 두 layer간이 아니라 한 layer안에서 일어나는 과정으로 계산된다.

    def linear_activation_forward(A_prev, W, b, activation):
        """
        Implement the forward propagation for the LINEAR->ACTIVATION layer
    
        Arguments:
        A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
        Returns:
        A -- the output of the activation function, also called the post-activation value 
        cache -- a python tuple containing "linear_cache" and "activation_cache";
                 stored for computing the backward pass efficiently
        """
        
        if activation == "sigmoid":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = sigmoid(Z)
        
        elif activation == "relu":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = relu(Z)
        
        assert (A.shape == (W.shape[0], A_prev.shape[1]))
        cache = (linear_cache, activation_cache)
    
        return A, cache
        
    A_prev, W, b = linear_activation_forward_test_case()
    
    A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
    print("With sigmoid: A = " + str(A))
    
    A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
    print("With ReLU: A = " + str(A))

    result: With sigmoid: A = [[ 0.96890023 0.11013289]] With ReLU: A = [[ 3.43896131 0. ]]

     

    (3) L-Layer Model

    - (2)의 과정을 (L-1)번 반복해야 한다.

    - ŷ=A[L]= σ(Z[L])=σ(W[L]A[L-1] +b[L]

    def L_model_forward(X, parameters):
        """
        Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
        
        Arguments:
        X -- data, numpy array of shape (input size, number of examples)
        parameters -- output of initialize_parameters_deep()
        
        Returns:
        AL -- last post-activation value
        caches -- list of caches containing:
                    every cache of linear_activation_forward() (there are L-1 of them, indexed from 0 to L-1)
        """
    
        caches = []
        A = X
        L = len(parameters) // 2                  # number of layers in the neural network
        
        # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
        for l in range(1, L):
            A_prev = A 
            ### START CODE HERE ### (≈ 2 lines of code)
            A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], activation="relu")
            caches.append(cache)
            ### END CODE HERE ###
        
        # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
        ### START CODE HERE ### (≈ 2 lines of code)
        AL, cache = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], activation="sigmoid")
        caches.append(cache)
        ### END CODE HERE ###
        
        assert(AL.shape == (1,X.shape[1]))
                
        return AL, caches
        
    X, parameters = L_model_forward_test_case_2hidden()
    AL, caches = L_model_forward(X, parameters)
    print("AL = " + str(AL))
    print("Length of caches list = " + str(len(caches)))

    result: AL = [[ 0.03921668 0.70498921 0.19734387 0.04728177]] Length of caches list = 3

     

     

     

    * Cost Function

    - forward & backward propagation을 수행하기 위해서는 cost를 계산해야 한다!

    - cross-entropy cost J =

    # GRADED FUNCTION: compute_cost
    
    def compute_cost(AL, Y):
        """
        Implement the cost function defined by equation (7).
    
        Arguments:
        AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
        Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
    
        Returns:
        cost -- cross-entropy cost
        """
        
        m = Y.shape[1]
    
        # Compute loss from aL and y.
        cost = -(1/m) * np.sum(np.multiply(Y, np.log(AL)) + (1-Y)*np.log(1-AL))
        
        cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
        assert(cost.shape == ())
        
        return cost
        
    Y, AL = compute_cost_test_case()
    
    print("cost = " + str(compute_cost(AL, Y)))

    result: cost = 0.279776563579

     

     

     

    * Backward Propagation module

    보라색: forward, 갈색: backward

    - Linear backward

    - Linear -> Activation backward where Activation computes the derivatives of either ReLU or sigmoid

    - [Linear->ReLU] * (L-1) -> Linear -> Sigmoid backward

     

    (1) Linear Backward

    - for layer l, the linear part is: Z[l]=W[l]A[l-1] + b[l]

    - dW[l], db[l], dA[l-1]을 구해야 한다.

        (1) dW[l] = ∂J/∂W[l] = (1/m) * dZ[l] * A[l-1].T

        (2) db[l] =  ∂J/∂b[l] = (1/m) * sum(dZ[l])

        (3) dA[l-1] = ∂J/∂A[l-1] = W[l]^T * dZ[l] 

    def linear_backward(dZ, cache):
        """
        Implement the linear portion of backward propagation for a single layer (layer l)
    
        Arguments:
        dZ -- Gradient of the cost with respect to the linear output (of current layer l)
        cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
    
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        A_prev, W, b = cache
        m = A_prev.shape[1]
    
        dW = (1/m) * np.dot(dZ, A_prev.T)
        db = (1/m) * np.sum(dZ, axis = 1, keepdims=True)
        dA_prev = np.dot(W.T, dZ)
        
        assert (dA_prev.shape == A_prev.shape)
        assert (dW.shape == W.shape)
        assert (db.shape == b.shape)
        
        return dA_prev, dW, db
        
    dZ, linear_cache = linear_backward_test_case()
    
    dA_prev, dW, db = linear_backward(dZ, linear_cache)
    print ("dA_prev = "+ str(dA_prev))
    print ("dW = " + str(dW))
    print ("db = " + str(db))

     

    (2) Linear-Activation backward

    - backpropagation for the Linear->Activation layer
    - g(.)가 activation function이면, sigmoid/relu_backward는 dZ[l] = dA[l] * g'(Z[l])을 계산하게 된다.

    def linear_activation_backward(dA, cache, activation):
        """
        Implement the backward propagation for the LINEAR->ACTIVATION layer.
        
        Arguments:
        dA -- post-activation gradient for current layer l 
        cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
        
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        linear_cache, activation_cache = cache
        
        if activation == "relu":
            dZ = relu_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
            
        elif activation == "sigmoid":
            dZ = sigmoid_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
        
        return dA_prev, dW, db
        
    dAL, linear_activation_cache = linear_activation_backward_test_case()
    
    dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activation = "sigmoid")
    print ("sigmoid:")
    print ("dA_prev = "+ str(dA_prev))
    print ("dW = " + str(dW))
    print ("db = " + str(db) + "\n")
    
    dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activation = "relu")
    print ("relu:")
    print ("dA_prev = "+ str(dA_prev))
    print ("dW = " + str(dW))
    print ("db = " + str(db))

    result: sigmoid: dA_prev = [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]] dW = [[ 0.10266786 0.09778551 -0.01968084]] db = [[-0.05729622]] relu: dA_prev = [[ 0.44090989 -0. ] [ 0.37883606 -0. ] [-0.2298228 0. ]] dW = [[ 0.44513824 0.37371418 -0.10478989]] db = [[-0.20837892]]

     

     

    (3) L-Model Backward

    - 전체 모델이 대한 backpropagation 함수를 만들자.

    def L_model_backward(AL, Y, caches):
        """
        Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
        
        Arguments:
        AL -- probability vector, output of the forward propagation (L_model_forward())
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
        caches -- list of caches containing:
                    every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                    the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
        
        Returns:
        grads -- A dictionary with the gradients
                 grads["dA" + str(l)] = ... 
                 grads["dW" + str(l)] = ...
                 grads["db" + str(l)] = ... 
        """
        grads = {}
        L = len(caches) # the number of layers
        m = AL.shape[1]
        Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
        
        # Initializing the backpropagation
        dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL
        
        # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"]
        current_cache = caches[L-1] #가장 끝이 current layer
        grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, 'sigmoid')
        
        # Loop from l=L-2 to l=0
        for l in reversed(range(L-1)):
            # lth layer: (RELU -> LINEAR) gradients.
            # Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
            current_cache = caches[l]
            dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+1)], current_cache, 'relu')
            grads["dA" + str(l)] = dA_prev_temp
            grads["dW" + str(l + 1)] = dW_temp
            grads["db" + str(l + 1)] = db_temp
    
        return grads
        
    AL, Y_assess, caches = L_model_backward_test_case()
    grads = L_model_backward(AL, Y_assess, caches)
    print_grads(grads)

    result:

    dW1 = [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]] db1 = [[-0.22007063] [ 0. ] [-0.02835349]] dA1 = [[ 0.12913162 -0.44014127] [-0.14175655 0.48317296] [ 0.01663708 -0.05670698]]

     

     

    (4) Update Parameters

    - gradient descent를 사용하여 parameter를 update시킨다.

        (1) W[l] = W[l] - αdW[l]

        (2) b[l] = b[l] - αdb[l]

    def update_parameters(parameters, grads, learning_rate):
        """
        Update parameters using gradient descent
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients, output of L_model_backward
        
        Returns:
        parameters -- python dictionary containing your updated parameters 
                      parameters["W" + str(l)] = ... 
                      parameters["b" + str(l)] = ...
        """
        
        L = len(parameters) // 2 # number of layers in the neural network
    
        # Update rule for each parameter. Use a for loop.
        for l in range(L):
            parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l + 1)]
            parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l + 1)]
        return parameters
        
    parameters, grads = update_parameters_test_case()
    parameters = update_parameters(parameters, grads, 0.1)
    
    print ("W1 = "+ str(parameters["W1"]))
    print ("b1 = "+ str(parameters["b1"]))
    print ("W2 = "+ str(parameters["W2"]))
    print ("b2 = "+ str(parameters["b2"]))

    result: W1 = [[-0.59562069 -0.09991781 -2.14584584 1.82662008] [-1.76569676 -0.80627147 0.51115557 -1.18258802] [-1.0535704 -0.86128581 0.68284052 2.20374577]] b1 = [[-0.04659241] [-1.28888275] [ 0.53405496]] W2 = [[-0.55569196 0.0354055 1.32964895]] b2 = [[-0.84610769]]

    '연구실' 카테고리의 다른 글

    #9. Gradient Checking  (0) 2019.10.07
    #7. Initialization  (0) 2019.10.07
    #5. Classification with one hidden layer  (0) 2019.10.02
    #4. Logistic Regression with a Neural Network midset  (0) 2019.09.29
    #3. numpy  (0) 2019.09.26

    댓글

©hyunbul