-
#5. Classification with one hidden layer연구실 2019. 10. 2. 16:46
* Dataset
- a numpy-array(matrix) X that contains your features(x1, x2)
- a numpy-array(vector) Y that contains your labels(red: 0, blue: 1)
* Simple Logistic Regression
- sklearn's build-in function을 사용하여 logistic regression 식을 학습시킬 수 있다.
# Train the logistic regression classifier clf = sklearn.linear_model.LogisticRegressionCV(); clf.fit(X.T, Y.T);
<Logistic Regression 식 학습>
# Plot the decision boundary for logistic regression plot_decision_boundary(lambda x: clf.predict(x), X, Y) plt.title("Logistic Regression") # Print accuracy LR_predictions = clf.predict(X.T) print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) + '% ' + "(percentage of correctly labelled datapoints)")
<학습시킨 모델의 decision boundary 및 accuracy 확인>
result:
- dataset이 linear separable하지 않으므로 logistic regression이 잘 작동하지 못한다.
* Neural Network model
- train a NN with a single hidden layer:
- 과정을 설명해보자면:
1) NN structure를 정의한다.(input unit의 갯수, hidden unit의 갯수 등등)
2) 모델의 parameter를 초기화한다.
3) 반복:
- forward propagation
- loss 계산
- backward propagation to get the gradients
- update parameters(gradient descent)
1) Defining the neural network structure
- n_x: the size of the input layer(X.shape[0])
- n_h: the size of the hidden layer(이 예시에서는 4)
- n_y: the size of the output layer(Y.shape[0])
2) Initialize the model's parameters
- weight는 random value로 초기화(np.random.randn(a, b) * 0.01)
- bias는 zero로 초기화(np.zeros((a, b))
3) The Loop
3.1 Forward Propagation
def forward_propagation(X, parameters): """ Argument: X -- input data of size (n_x, m) parameters -- python dictionary containing your parameters (output of initialization function) Returns: A2 -- The sigmoid output of the second activation cache -- a dictionary containing "Z1", "A1", "Z2" and "A2" """ # Retrieve each parameter from the dictionary "parameters" W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] # Implement Forward Propagation to calculate A2 (probabilities) Z1 = np.dot(W1, X) + b1 #(1) A1 = np.tanh(Z1) #(2) Z2 = np.dot(W2, A1) + b2 #(3) A2 = sigmoid(Z2) #(4) assert(A2.shape == (1, X.shape[1])) cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2} return A2, cache X_assess, parameters = forward_propagation_test_case() A2, cache = forward_propagation(X_assess, parameters) # Note: we use the mean here just to make sure that your output matches ours. print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))
result: 0.262818640198 0.091999045227 -1.30766601287 0.212877681719
3.2 Cost Function
Cost Function def compute_cost(A2, Y, parameters): """ Computes the cross-entropy cost given in equation (13) Arguments: A2 -- The sigmoid output of the second activation, of shape (1, number of examples) Y -- "true" labels vector of shape (1, number of examples) parameters -- python dictionary containing your parameters W1, b1, W2 and b2 [Note that the parameters argument is not used in this function, but the auto-grader currently expects this parameter. Future version of this notebook will fix both the notebook and the auto-grader so that `parameters` is not needed. For now, please include `parameters` in the function signature, and also when invoking this function.] Returns: cost -- cross-entropy cost given equation (13) """ m = Y.shape[1] # number of example # Compute the cross-entropy cost logprobs = np.multiply(np.log(A2),Y) cost = - (1/m) * np.sum(logprobs + (1 - Y)*np.log(1-A2)) cost = float(np.squeeze(cost)) # makes sure cost is the dimension we expect. # E.g., turns [[17]] into 17 assert(isinstance(cost, float)) return cost A2, Y_assess, parameters = compute_cost_test_case() print("cost = " + str(compute_cost(A2, Y_assess, parameters)))
result: cost = 0.6930587610394646
3.3 Backward Propagation
gradient descent def backward_propagation(parameters, cache, X, Y): """ Implement the backward propagation using the instructions above. Arguments: parameters -- python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". X -- input data of shape (2, number of examples) Y -- "true" labels vector of shape (1, number of examples) Returns: grads -- python dictionary containing your gradients with respect to different parameters """ m = X.shape[1] # First, retrieve W1 and W2 from the dictionary "parameters". W1 = parameters["W1"] W2 = parameters["W2"] # Retrieve also A1 and A2 from dictionary "cache". A1 = cache["A1"] A2 = cache["A2"] # Backward propagation: calculate dW1, db1, dW2, db2. above) dZ2 = A2 - Y dW2 = (1/m) * np.dot(dZ2, A1.T) db2 = (1/m) * np.sum(dZ2, axis = 1, keepdims = True) dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2)) dW1 = (1/m) * np.dot(dZ1, X.T) db1 = (1/m) * np.sum(dZ1, axis = 1, keepdims = True) grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} return grads
3.4 Update Parameters
- Gradient Descent Rule: θ=θ−α*(∂J/∂θ) (α:learning rate, θ:parameter)
- Good learning rate라면 converge할 것이고 bad learning rate라면 diverge할 것이다.
def update_parameters(parameters, grads, learning_rate = 1.2): """ Updates parameters using the gradient descent update rule given above Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients Returns: parameters -- python dictionary containing your updated parameters """ # Retrieve each parameter from the dictionary "parameters" W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] # Retrieve each gradient from the dictionary "grads" dW1 = grads["dW1"] db1 = grads["db1"] dW2 = grads["dW2"] db2 = grads["db2"] # Update rule for each parameter W1 = W1 - learning_rate * dW1 b1 = b2 - learning_rate * db1 W2 = W2 - learning_rate * dW2 b2 = b2 - learning_rate * db2 parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters parameters, grads = update_parameters_test_case() parameters = update_parameters(parameters, grads) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"]))
result: W1 = [[-0.00643025 0.01936718] [-0.02410458 0.03978052] [-0.01653973 -0.02096177] [ 0.01046864 -0.05990141]] b1 = [[ 9.13687537e-05] [ 9.60772116e-05] [ 9.17236240e-05] [ 9.08396764e-05]] W2 = [[-0.01041081 -0.04463285 0.01758031 0.04747113]] b2 = [[ 0.00010457]]
4) Integrate parts 1), 2) and 3) in nn_model()
5) Predictions
- use forward propagation to predict results
- hidden unit 갯수가 늘어날수록 training set에는 더 잘 맞지만 overfitting 문제가 발생하게 된다.
- normalization을 이용하여 overfitting 문제를 조금은 해결할 수 있다.
'연구실' 카테고리의 다른 글
#7. Initialization (0) 2019.10.07 #6. Building your Deep Neural Network: Step by Step (0) 2019.10.04 #4. Logistic Regression with a Neural Network midset (0) 2019.09.29 #3. numpy (0) 2019.09.26 #2. CNN (0) 2019.09.23