-
#22. Operations on word vectors연구실 2019. 10. 26. 02:50
* Cosine similarity
- 두 단어가 얼마나 similar한 지 계산하기 위해 cosine sililarity를 사용한다.
- 두 단어 벡터에 대해:
# GRADED FUNCTION: cosine_similarity def cosine_similarity(u, v): """ Cosine similarity reflects the degree of similariy between u and v Arguments: u -- a word vector of shape (n,) v -- a word vector of shape (n,) Returns: cosine_similarity -- the cosine similarity between u and v defined by the formula above. """ distance = 0.0 # Compute the dot product between u and v (≈1 line) dot = np.dot(u, v) # Compute the L2 norm of u (≈1 line) norm_u = np.sqrt(np.sum(np.square(u))) # Compute the L2 norm of v (≈1 line) norm_v = np.sqrt(np.sum(np.square(v))) # Compute the cosine similarity defined by formula (1) (≈1 line) cosine_similarity = dot / (norm_u * norm_v) return cosine_similarity
* Word analogy task
- "A is to B as C is to _"에서 _가 무엇인지를 구해야 한다.
- ea, eb, ec, ed -> eb - ea ≈ ed - ec와 같은 관계를 가지게 됨.
# GRADED FUNCTION: complete_analogy def complete_analogy(word_a, word_b, word_c, word_to_vec_map): """ Performs the word analogy task as explained above: a is to b as c is to ____. Arguments: word_a -- a word, string word_b -- a word, string word_c -- a word, string word_to_vec_map -- dictionary that maps words to their corresponding vectors. Returns: best_word -- the word such that v_b - v_a is close to v_best_word - v_c, as measured by cosine similarity """ # convert words to lower case word_a, word_b, word_c = word_a.lower(), word_b.lower(), word_c.lower() # Get the word embeddings e_a, e_b and e_c (≈1-3 lines) e_a, e_b, e_c = word_to_vec_map[word_a], word_to_vec_map[word_b], word_to_vec_map[word_c] words = word_to_vec_map.keys() max_cosine_sim = -100 # Initialize max_cosine_sim to a large negative number best_word = None # Initialize best_word with None, it will help keep track of the word to output # loop over the whole word vector set for w in words: # to avoid best_word being one of the input words, pass on them. if w in [word_a, word_b, word_c] : continue # Compute cosine similarity between the vector (e_b - e_a) and the vector ((w's vector representation) - e_c) (≈1 line) cosine_sim = cosine_similarity(np.subtract(e_b, e_a), np.subtract(word_to_vec_map[w], e_c)) # If the cosine_sim is more than the max_cosine_sim seen so far, # then: set the new max_cosine_sim to the current cosine_sim and the best_word to the current word (≈3 lines) if cosine_sim > max_cosine_sim: max_cosine_sim = cosine_sim best_word = w return best_word
* Debiasing word vectors
- word embedding에 gender biases가 포함되어 있는 경우들이 존재하기 때문에 이러한 biases를 제거해주는 작업이 필요하다.
- g = e(woman) - e(man)이라고 하자. 그러면 벡터 g는 gender에 대한 인코딩일 것이다.
- g를 이용해 단어들간의 similarity를 계산해보면:
print('Other words and their similarities:') word_list = ['lipstick', 'guns', 'science', 'arts', 'literature', 'warrior','doctor', 'tree', 'receptionist', 'technology', 'fashion', 'teacher', 'engineer', 'pilot', 'computer', 'singer'] for w in word_list: print (w, cosine_similarity(word_to_vec_map[w], g))
Other words and their similarities: lipstick 0.276919162564 guns -0.18884855679 science -0.0608290654093 arts 0.00818931238588 literature 0.0647250443346 warrior -0.209201646411 doctor 0.118952894109 tree -0.0708939917548 receptionist 0.330779417506 technology -0.131937324476 fashion 0.0356389462577 teacher 0.179209234318 engineer -0.0803928049452 pilot 0.00107644989919 computer -0.103303588739 singer 0.185005181365
이런 식으로 gender stereotype을 담은 결과값들이 나온다.
- 이러한 bias를 제거해 주는 알고리즘을 사용해보자!
(1) Neutralize bias for non-gender specific words
- 50차원의 word embedding을 사용하고 있다고 하면 space는 다음과 같이 나눠지게 될 것이다.: the bias-direction g와 나머지 49 dimensions(g⊥)
- input embedding e에 대해 e^debiased를 구하는 식은 다음과 같다:
def neutralize(word, g, word_to_vec_map): """ Removes the bias of "word" by projecting it on the space orthogonal to the bias axis. This function ensures that gender neutral words are zero in the gender subspace. Arguments: word -- string indicating the word to debias g -- numpy-array of shape (50,), corresponding to the bias axis (such as gender) word_to_vec_map -- dictionary mapping words to their corresponding vectors. Returns: e_debiased -- neutralized word vector representation of the input "word" """ ### START CODE HERE ### # Select word vector representation of "word". Use word_to_vec_map. (≈ 1 line) e = word_to_vec_map[word] # Compute e_biascomponent using the formula give above. (≈ 1 line) e_biascomponent = (np.dot(e, g) / (np.sum(np.square(g)))) * g # Neutralize e by substracting e_biascomponent from it # e_debiased should be equal to its orthogonal projection. (≈ 1 line) e_debiased = e - e_biascomponent ### END CODE HERE ### return e_debiased
(2) Equalization algorithm for gender-specific words
- actress/actor 같은 경우 동일한 값을 가지도록 만들어주어야 함.
- 예를 들어 'babysit'의 경우, actor보다 actress와의 거리가 더 가깝다. 이런 경우에도 차이가 나지 않도록 만들어 주어야 함.
def equalize(pair, bias_axis, word_to_vec_map): """ Debias gender specific words by following the equalize method described in the figure above. Arguments: pair -- pair of strings of gender specific words to debias, e.g. ("actress", "actor") bias_axis -- numpy-array of shape (50,), vector corresponding to the bias axis, e.g. gender word_to_vec_map -- dictionary mapping words to their corresponding vectors Returns e_1 -- word vector corresponding to the first word e_2 -- word vector corresponding to the second word """ ### START CODE HERE ### # Step 1: Select word vector representation of "word". Use word_to_vec_map. (≈ 2 lines) w1, w2 = pair e_w1, e_w2 = word_to_vec_map[w1], word_to_vec_map[w2] # Step 2: Compute the mean of e_w1 and e_w2 (≈ 1 line) mu = (e_w1 + e_w2) / 2 # Step 3: Compute the projections of mu over the bias axis and the orthogonal axis (≈ 2 lines) mu_B = np.dot(mu, bias_axis) / (np.linalg.norm(bias_axis)**2) * bias_axis mu_orth = mu - mu_B # Step 4: Use equations (7) and (8) to compute e_w1B and e_w2B (≈2 lines) e_w1B = np.dot(e_w1, bias_axis) / (np.linalg.norm(bias_axis)**2) * bias_axis e_w2B = np.dot(e_w2, bias_axis) / np.sum(np.square(bias_axis)) * bias_axis # Step 5: Adjust the Bias part of e_w1B and e_w2B using the formulas (9) and (10) given above (≈2 lines) corrected_e_w1B = np.sqrt((1-(np.linalg.norm(mu_orth)))**2) * (e_w1B - mu_B) / (np.abs((e_w1 - mu_orth) - mu_B)) corrected_e_w2B = np.sqrt((1-(np.linalg.norm(mu_orth)))**2) * (e_w2B - mu_B) / (np.abs((e_w2 - mu_orth) - mu_B)) # Step 6: Debias by equalizing e1 and e2 to the sum of their corrected projections (≈2 lines) e1 = corrected_e_w1B + mu_orth e2 = corrected_e_w2B + mu_orth ### END CODE HERE ### return e1, e2
cosine similarities before equalizing: cosine_similarity(word_to_vec_map["man"], gender) = -0.117110957653 cosine_similarity(word_to_vec_map["woman"], gender) = 0.356666188463 cosine similarities after equalizing: cosine_similarity(e1, gender) = -0.710920529702 cosine_similarity(e2, gender) = 0.738567730352
'연구실' 카테고리의 다른 글
#24. Neural Machine Translation (0) 2019.10.28 #23. Emojify (0) 2019.10.28 #21. Improvise a Jazz Solo with an LSTM Network (0) 2019.10.24 #20. Dinosaur Island - Character-Level Language Modeling (0) 2019.10.24 #19. Building your Recurrent Neural Network - Step by Step (0) 2019.10.23