-
#23. Emojify연구실 2019. 10. 28. 00:32
* Baseline model: Emojifier-V1
(1) Dataset EMOJISET
- X: 127 sentences / Y: a integer between 0~4 corresponding to an emoji for each sentence
(2) Overview of the Emojifier-V1
(3) Implementing Emojifier-V1
# GRADED FUNCTION: sentence_to_avg def sentence_to_avg(sentence, word_to_vec_map): """ Converts a sentence (string) into a list of words (strings). Extracts the GloVe representation of each word and averages its value into a single vector encoding the meaning of the sentence. Arguments: sentence -- string, one training example from X word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation Returns: avg -- average vector encoding information about the sentence, numpy-array of shape (50,) """ # Step 1: Split sentence into list of lower case words (≈ 1 line) words = sentence.lower().split() # Initialize the average word vector, should have the same shape as your word vectors. avg = np.zeros((50, )) # Step 2: average the word vectors. You can loop over the words in the list "words". for w in words: avg += word_to_vec_map[w] avg = avg / len(words) return avg
- sentence_to_avg() 함수를 통해 얻은 값들을 forward propagation에 전달해 cost를 계산하고 backpropagate 시켜 softmax의 parameter를 업데이트 시킨다.
- 식은 다음과 같다:
# GRADED FUNCTION: model def model(X, Y, word_to_vec_map, learning_rate = 0.01, num_iterations = 400): """ Model to train word vector representations in numpy. Arguments: X -- input data, numpy array of sentences as strings, of shape (m, 1) Y -- labels, numpy array of integers between 0 and 7, numpy-array of shape (m, 1) word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation learning_rate -- learning_rate for the stochastic gradient descent algorithm num_iterations -- number of iterations Returns: pred -- vector of predictions, numpy-array of shape (m, 1) W -- weight matrix of the softmax layer, of shape (n_y, n_h) b -- bias of the softmax layer, of shape (n_y,) """ np.random.seed(1) # Define number of training examples m = Y.shape[0] # number of training examples n_y = 5 # number of classes n_h = 50 # dimensions of the GloVe vectors # Initialize parameters using Xavier initialization W = np.random.randn(n_y, n_h) / np.sqrt(n_h) b = np.zeros((n_y,)) # Convert Y to Y_onehot with n_y classes Y_oh = convert_to_one_hot(Y, C = n_y) # Optimization loop for t in range(num_iterations): # Loop over the number of iterations for i in range(m): # Loop over the training examples ### START CODE HERE ### (≈ 4 lines of code) # Average the word vectors of the words from the i'th training example avg = sentence_to_avg(X[i], word_to_vec_map) # Forward propagate the avg through the softmax layer z = np.dot(W, avg) + b a = softmax(z) # Compute cost using the i'th training label's one hot representation and "A" (the output of the softmax) cost = -np.sum(np.multiply(Y_oh[i], np.log(a))) ### END CODE HERE ### # Compute gradients dz = a - Y_oh[i] dW = np.dot(dz.reshape(n_y,1), avg.reshape(1, n_h)) db = dz # Update parameters with Stochastic Gradient Descent W = W - learning_rate * dW b = b - learning_rate * db if t % 100 == 0: print("Epoch: " + str(t) + " --- cost = " + str(cost)) pred = predict(X, Y, W, b, word_to_vec_map) return pred, W, b
(4) Examining test set performance
- Training set: Accuracy: 0.977272727273 Test set: Accuracy: 0.857142857143
* Emojifier-V2: Using LSTMs in Keras
(1) Overview of the model
(2) Keras and mini-batching
- 많은 딥러닝 프레임워크에서 동일한 mini-batch에 있는 모든 sequence들은 같은 길이를 가져야 한다. 그래서 padding을 사용한다.
- 최대 sequence 길이를 지정하고, 그 길이에 맞추어 모든 문장에 padding을 넣어준다.
- "I love you" => (e_i, e_love, e_you, 0, 0, ..., 0)
(3) The Embedding layer
- 케라스에서 embedding matrix는 layer로 표현되며, 양의 정수(indices corresponding to words)를 embedding vector에 mapping시킨다.
# GRADED FUNCTION: sentences_to_indices def sentences_to_indices(X, word_to_index, max_len): """ Converts an array of sentences (strings) into an array of indices corresponding to words in the sentences. The output shape should be such that it can be given to `Embedding()` (described in Figure 4). Arguments: X -- array of sentences (strings), of shape (m, 1) word_to_index -- a dictionary containing the each word mapped to its index max_len -- maximum number of words in a sentence. You can assume every sentence in X is no longer than this. Returns: X_indices -- array of indices corresponding to words in the sentences from X, of shape (m, max_len) """ m = X.shape[0] # number of training examples # Initialize X_indices as a numpy matrix of zeros and the correct shape (≈ 1 line) X_indices = np.zeros((m, max_len)) for i in range(m): # loop over training examples # Convert the ith training sentence in lower case and split is into words. You should get a list of words. sentence_words = [x.lower() for x in X[i].split()] # Initialize j to 0 j = 0 # Loop over the words of sentence_words for w in sentence_words: # Set the (i,j)th entry of X_indices to the index of the correct word. X_indices[i, j] = word_to_index[w] # Increment j to j + 1 j = j + 1 return X_indices
# GRADED FUNCTION: pretrained_embedding_layer def pretrained_embedding_layer(word_to_vec_map, word_to_index): """ Creates a Keras Embedding() layer and loads in pre-trained GloVe 50-dimensional vectors. Arguments: word_to_vec_map -- dictionary mapping words to their GloVe vector representation. word_to_index -- dictionary mapping from words to their indices in the vocabulary (400,001 words) Returns: embedding_layer -- pretrained layer Keras instance """ vocab_len = len(word_to_index) + 1 # adding 1 to fit Keras embedding (requirement) emb_dim = word_to_vec_map["cucumber"].shape[0] # define dimensionality of your GloVe word vectors (= 50) ### START CODE HERE ### # Initialize the embedding matrix as a numpy array of zeros of shape (vocab_len, dimensions of word vectors = emb_dim) emb_matrix = np.zeros((vocab_len, emb_dim)) # Set each row "index" of the embedding matrix to be the word vector representation of the "index"th word of the vocabulary for word, index in word_to_index.items(): emb_matrix[index, :] = word_to_vec_map[word] # Define Keras embedding layer with the correct output/input sizes, make it non-trainable. Use Embedding(...). Make sure to set trainable=False. embedding_layer = Embedding(vocab_len, emb_dim, trainable = False) ### END CODE HERE ### # Build the embedding layer, it is required before setting the weights of the embedding layer. Do not modify the "None". embedding_layer.build((None,)) # Set the weights of the embedding layer to the embedding matrix. Your layer is now pretrained. embedding_layer.set_weights([emb_matrix]) return embedding_layer
(3) Building the Emojifier-V2
# GRADED FUNCTION: Emojify_V2 def Emojify_V2(input_shape, word_to_vec_map, word_to_index): """ Function creating the Emojify-v2 model's graph. Arguments: input_shape -- shape of the input, usually (max_len,) word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation word_to_index -- dictionary mapping from words to their indices in the vocabulary (400,001 words) Returns: model -- a model instance in Keras """ ### START CODE HERE ### # Define sentence_indices as the input of the graph, it should be of shape input_shape and dtype 'int32' (as it contains indices). sentence_indices = Input(input_shape, dtype = 'int32') # Create the embedding layer pretrained with GloVe Vectors (≈1 line) embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index) # Propagate sentence_indices through your embedding layer, you get back the embeddings embeddings = embedding_layer(sentence_indices) # Propagate the embeddings through an LSTM layer with 128-dimensional hidden state # Be careful, the returned output should be a batch of sequences. X = LSTM(128, return_sequences=True)(embeddings) # Add dropout with a probability of 0.5 X = Dropout(0.5)(X) # Propagate X trough another LSTM layer with 128-dimensional hidden state # Be careful, the returned output should be a single hidden state, not a batch of sequences. X = LSTM(128, return_sequences=False)(X) # Add dropout with a probability of 0.5 X = Dropout(0.5)(X) # Propagate X through a Dense layer with softmax activation to get back a batch of 5-dimensional vectors. X = Dense(5)(X) # Add a softmax activation X = Activation('softmax')(X) # Create Model instance which converts sentence_indices into X. model = Model(inputs=sentence_indices, outputs=X) ### END CODE HERE ### return model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) X_train_indices = sentences_to_indices(X_train, word_to_index, maxLen) Y_train_oh = convert_to_one_hot(Y_train, C = 5) model.fit(X_train_indices, Y_train_oh, epochs = 50, batch_size = 32, shuffle=True)
- Summary:
1) training set이 매우 작은 경우, word embedding을 사용하는 것이 도움이 된다. training set에 아예 없는 단어에도 작동할 수 있도록 만들어 준다.
2) 케라스에서 sequence model을 학습시킬 때 다음과 같은 부분들을 명심하자
1. mini-batch를 사용하기 위해서는 padding을 사용해 mini-batch안에 있는 모든 예시들이 같은 길이를 가지도록 만들어주자.
2. Embedding() layer는 pretrained 된 값으로 초기화 될 수 있다.
3. LSTM()은 return_sequence라는 flag를 가지고 있어 모든 hidden state를 리턴할 것인지, 아니면 마지막 state만 리턴 할 것인지를 정할 수 있다.
4. LSTM()다음에 Dropout()을 사용해 네트워크를 정규화 시킬 수 있다.
'연구실' 카테고리의 다른 글
#25. YOLO v3 with PyTorch (0) 2019.11.07 #24. Neural Machine Translation (0) 2019.10.28 #22. Operations on word vectors (0) 2019.10.26 #21. Improvise a Jazz Solo with an LSTM Network (0) 2019.10.24 #20. Dinosaur Island - Character-Level Language Modeling (0) 2019.10.24